Modeling of Tandem Solar Cell InP/Ge using AMPS-1D
نویسندگان
چکیده
منابع مشابه
Numerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D
Numerical modeling of polycrystalline thin-film solar cell serves as an imperative procedure to test the suitability of proposed physical clarification and to anticipate the effect of physical changes on cell performance. All in all, this must be conducted with only partial knowledge of input parameters. In this paper, we evaluated the numerical simulation of CdS/CIGS tandem multi junction sola...
متن کاملPACS numbers: 78.20.Bh, 73.40.Lq, 84.60.Jt SIMULATION OF CIGS THIN FILM SOLAR CELLS USING AMPS-1D
The solar cell structure based on copper indium gallium diselenide (CIGS) as the absorber layer, cadmium sulfide (CdS) as a buffer layer un-doped (i) and Aluminium (Al) doped zinc oxide (ZnO) as a window layer was simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of CIGS layer was varied ...
متن کاملPlasmonic polymer tandem solar cell.
We demonstrated plasmonic effects in an inverted tandem polymer solar cell configuration by blending Au nanoparticles (NPs) into the interconnecting layer (ICL) that connects two subcells. Experimental results showed this plasmonic enhanced ICL improves both the top and bottom subcells' efficiency simultaneously by enhancing optical absorption. The presence of Au NPs did not cause electrical ch...
متن کاملHigh performance polymer tandem solar cell
A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be ...
متن کاملAmps Modeling of Nanocrystalline Si P-layer in A-si Nip Solar Cells
This paper reports numerical simulations for the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of a-Si based component solar cells, using Analysis of Microelectronic and Photonic Structures (AMPS) computer model developed at Penn State University. The effects of band offset and potential barrier formed at the interfaces of player with i-layer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2013
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2013.07.027